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ARTICLE INFO ABSTRACT

Keywords: To precisely diagnose neurological diseases, such as Alzheimer’s disease, clinicians need to observe the
Alzheimer’s Disease Diagnosis microstructural changes of local brain atrophy with the help of structural magnetic resonance image (sMRI).
Structural magnetic resonance image Some Convolutional Neural Networks (CNNs) have recently achieved excellent performance in auxiliary

Computer-aided diagnosis

Deen learni clinicians to provide the diagnosis suggestion. However, there still exist several challenges. Foremost, several
eep learning

researchers manually predefine some regions of interest (ROIs) as the input of the CNN-based networks, which

Z;TE Ziz:::ie;n impedes the model’s robustness and interpretability of clinical applications. Second, since the position relevance
Deformation of pathological features interferes with the surrounding tissue regions in ROIs, it is hard for the current
Inheritance CNN-based networks to extract the microstructural changes of these ROIs precisely. To address the above
challenges, we optimize the Transformer structure for Alzheimer’s Disease Diagnosis and propose an Inheritable
Deformable Attention Network (IDA-Net). Specifically, the IDA-Net mainly comprises the 3D Deformable Self-
Attention module and the Inheritable 3D Deformable Self-Attention module. The 3D Deformable Self-Attention
module can automatically adjust the position and scale of the selected patches according to the structural
changes in sMRI. Furthermore, the Inheritable 3D Deformable Self-Attention module can locate and output
relatively important regions with discriminative features in sMRI, which can assist physicians in the clinical
diagnosis. Our proposed IDA-Net method is evaluated on the sMRI of 2813 subjects from ADNI and AIBL
datasets. The results show that our IDA-Net method behaves better than several state-of-the-art methods in

classification performance and model generalization.
1. Introduction shown excellent clinical values in the progression of AD. Structural
changes in the brain can be observed in sMRI scans of individuals with
Alzheimer’s Disease (AD), one of the most severe neurological AD. As the disease progresses, there are characteristic changes in the
diseases among the elderly, is characterized by progressive memory- brain structure that can be used as biomarkers to identify the disease
related impairments such as memory deterioration and cognitive and monitor its progression. One of the key structural changes observed

deficits. The main reason AD dementia is an incurable and irreversible
disease is that no pharmacologic treatments have proven effective
enough in reversing AD progression. Therefore, early detection at AD
dementia prodromal stages, i.e., Mild Cognitive Impairment (MCI),
is of great clinical importance for applying some interventions and
treatments to mitigate the progression of converting to AD dementia.
Due to the related structural brain changes of AD emerge even earlier
and are more obvious than the amnestic seeable symptoms. Then sMRI,
which is focused on identifying subtle brain anatomical changes, has

in sMRI scans of individuals with AD is brain atrophy, which refers to
a decrease in the size of the brain. This is particularly prominent in
regions of the brain associated with memory and cognitive function,
such as the hippocampus [1]. Another structural change that can be
observed in sMRI scans of individuals with AD is a decrease in the corti-
cal thickness of certain areas of the brain, such as the entorhinal cortex
and the precuneus [2]. This decrease in cortical thickness is thought to
reflect neuronal loss and is considered a hallmark of AD. In addition to
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(a) Original patch-based methods (b) IDA-Net (ours)

Fig. 1. We give a comparison of IDA-Net with original patch-based methods. The stars
represent the discriminative atrophic brain locations. (a) Original patch-based methods
split the whole sMRI scan into patches of fixed location and scale, which may destroy
the semantics of the discriminative pathological regions. (b) Our proposed IDA-Net
locates and output discriminates atrophic brain locations by adjusting the selected
patches’ position and scale.

these structural changes, changes in the distribution of certain brain
metabolites, such as N-acetylaspartate (NAA) and myoinositol (MI),
can also be observed in sMRI scans of individuals with AD [3]. These
changes in brain metabolites are thought to reflect changes in neuronal
and glial cell metabolism and can be used as biomarkers to identify
the disease and monitor its progression. Consequently, many studies
have been made to investigate differences in typical structural brain
changes between AD patients and normal controls (NC) and to predict
the progression of MCI based on sMRI. The conventional AD diagnosis
methods based on sMRI have made significant progress in the past few
decades [4-6].

Most current sMRI-based AD diagnosis methods are based on hand-
crafted approaches designed by experts in related fields using do-
main knowledge [7,8]. According to the scales of handcrafted ROIs
from sMRI for integrating feature extraction, sMRI-based AD diagnosis
studies can be mainly subdivided into voxel-based, region-based, and
patch-based methods. Selecting the right ROIs in sMRI scans is crucial
in accurately diagnosing AD. sMRI scans provide detailed images of
the brain and its structure, and the selection of ROIs allows for the
focused analysis of specific regions that are associated with AD. Major
ROIs selected in sMRI used for AD diagnosis include the hippocampus,
entorhinal cortex, and amygdala [2]. These regions are responsible
for memory and spatial navigation, and are often among the first to
show signs of degeneration in individuals with AD. In regard to the
voxel-based methods, the voxel features related to AD classification
are extracted from sMRI and then combined into high-dimensional
data [9-11]. For example, a linear support vector machine(SVM) was
constructed to discriminate individuals with an MCI from controls by
extracting the volume and geometry of each point on the surface of the
cerebral cortex [12]. The measurement of gray matter (GM) density
can provide important information about the structural organization
and function of the brain, is a common approach used to assist AD
diagnosis. The GM density map was used to perform AD classification
by calibrating the spatial regularizer to linear programming boosting
(LPboost-ing), such as Demiriz et al. [13] and Hinrichset al. [14]. Cho
et al. [15] propose an incremental learning-based individual classifica-
tion method for AD diagnosis and prediction using cortical thickness
data. However, the voxel-level method only considers voxel features,
ignoring their correlation. And since the voxel features are often very
large, there are fewer images for training AD classification, which is
easy to cause the overfitting phenomenon, resulting in a decrease in
prediction accuracy. Thus, the region-based method is proposed to
solve these problems

In region-based methods, features are extracted from multiple re-
gions through pre-segmented ROIs, after which classifiers are con-
structed. For instance, Zhang et al. [16] and Magnin et al. [17] di-
vided the whole brain into several non-overlapping regions, aligned
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the sMRI of each individual to an anatomically labeled map, and then
extracted the brain region features to train the SVM classifier. After
that, multicore-based approaches combining marginal Fisher analysis
were proposed to achieve sparse dimensionality reduction of ROIs and
capture the complex relationship between sMRI features and disease
states [18]. Koikkalainen et al. [19] spatially normalized each individ-
ual sMRI space to multiple maps. They then extracted discriminative
features of each map space to build an integrated classification model
for AD diagnosis. Most other region-based methods, which extract
features only from the ROIs, may not include other disease features.
Moreover, the output of the classifier was combined to identify the
normal control group (NC). These regions rely only on prior knowledge
to instruct the selection of ROIs and features. However, since the pre-
segmentation of ROIs needs to rely on the experience of experts, the
definition, and segment of ROIs are resource-intensive. Furthermore,
they only evaluate regions of interest, which can lead to ignoring
other important pathological areas of AD. For example, regions like the
angular gyrus and inferior parietal lobe are rarely assessed in ROIs,
but these are also regions severely affected in AD [20]. Therefore,
the patch-based methods between the voxel-based and region-based
methods are proposed. It can more effectively solve the problem of
ignoring structural changes.

In patch-based methods, the selection of the patches, i.e., Patch Lo-
cation Proposals, can be determined by particular anatomical landmark
detectors [21] or statistics methods [22]. Tong et al. [23] extracted
local strength blocks as features and proposed to use a multiple instance
learning (MIL) method for the detection of AD and its prodromal stage
MCI. A dual attention multi-instance deep learning model (DA-MIDL)
was proposed to confirm discriminative pathological locations for AD
diagnosis [1]. A hierarchical full convolutional network (H-FCN) is
proposed to automatically identify local patches and regions in whole
brain sMRI and then co-learn multi-scale feature and fuse them into
a hierarchical classification model for AD diagnosis [24]. However,
determining the location and size of the patch is still a problem. As
shown in Fig. 1(a), the size and position of the input patch are fixed.
Moreover, changes in brain structure caused by brain atrophy may
occur in areas of different scales and locations. Using fixed-size and
fixed-position patches may disrupt the semantics of the discriminative
pathological regions to represent various local features. Additionally,
existing patch-based methods are highly flawed because the Patch
Location Proposal is disconnected from subsequent network models,
which means that they are not strictly end-to-end methods. At the same
time, the Patch Location Proposal is a fixed parameter that cannot be
learned and cannot be jointly optimized in real-time using the network
model, which will limit the performance of the model. Then, the advent
of Transformer brings the potential solution of a unified end-to-end
approach to patch-based methods research.

In recent years, Transformer has become the leading model in nat-
ural language processing (NLP) [25]. Given the great success achieved
in NLP tasks with the help of Transformers, researchers have begun
exploring Transformers in computer vision. They found that the abil-
ity to model long-range dependencies and extract global information
through the multi-head Self-Attention (MSA) in Transformers is also
applicable for pixel-based image processing. Vision Transformer (ViT)
was the first pioneer to apply a pure Transformer rightly to image
patches for image recognition and achieve excellent performance in
this task when pre-training on large datasets like imageNet-22K in
advance [26]. Since then, a lot of Transformer variants have been
derived and successfully applied in many vision tasks such as image
classification [27-29], object detection [30-32] and image genera-
tion [33], etc. Inspired by these achievements, some attempts begin
to be made on medical image analysis by combining the advantage of
Transformer. For example, the Medical Transformer proposed a gated
position-sensitive axial attention mechanism, a Local-Global (LoGo)
training strategy to realize Transformer working flexibly well on rela-
tively small medical image datasets [34]. The Swin-Unet [35] proposed
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an Unet-like pure Transformer, which is a Transformer-based U-shaped
Encoder-Decoder architecture motivated by U-net [36] and Swin Trans-
former [37] and outperforms many full-convolution or the combination
of Transformer and convolution works in medical image segmentation
task. Following Swin-Unet [35], DS-TransUNet is a further work that
also combines the Swin Transformer [37] with the U-shaped archi-
tecture while proposing a dual-scale encoding mechanism to ensure
the semantic consistency between the coarse and fine features and a
TIF module to fuse multiscale contexts and yield high-quality semantic
segmentation performance [38].

Reviewing the above literature, we can find that the secret to the
success of Transformer is its structure, which also meets the require-
ments of the patch-based methods method in Alzheimer’s Disease di-
agnosis well. Specifically, the patch-based methods method will firstly
regard the entire sSMRI as a series of patches and extract discriminative
features from each patch, which can correspond to the patch em-
bedding operation in Transformer. Besides, the Self-Attention module
in Transformer can model remote dependencies in sequence patches.
The multi-head mechanism in Transformer can enrich the diversity
of modeling the patch relationship to extract more comprehensive
information. The stacked attention module in Transformer can integrate
the local feature representation of patches into the global feature rep-
resentation of the whole sMRI. The Transformer method integrates the
Patch Location Proposals, patch feature representation extraction, and
the construction of the classifier in the patch-based methods method
into an end-to-end strategy, which means that all the modules can be
jointly optimized in real-time during the training.

Nevertheless, the Transformer still could not be directly applied
to AD diagnosis for some reasons. Firstly, the critical challenge in
visual recognition, especially in the computer-aided medical diagnosis
domain, is adapting to learn geometric variations of ROIs’ scale, shape,
and part deformation. Specifically, the patch size and location in the
vanilla Transformer are also fixed, which to some extent does not
address the limitation of the patch-based methods approach. Moreover,
in sMRI scans, only a few areas have noticeable structural changes
which are highly related to the pathological characteristics, while
the distinction information in other areas is very small. The original
Transformer cannot locate relatively essential regions in global sMRI
scans well, which cannot have specific outputs on the pathological part,
ignoring the explanatory problem in medical practice.

In order to solve these problems, we do the following work. To
begin with, to construct a unified end-to-end approach for sMRI-based
AD diagnosis, we propose an Inheritable Deformable Attention Network
(IDA-Net). With the Transformer as the backbone, the IDA-Net presents
two new self-attention modules based on the above two problems.
On the one hand, to solve the first problem mentioned above, the
3D Deformable Self-Attention module is proposed. As illustrated in
Fig. 1(b), through the 3D Deformable Self-Attention module, IDA-Net
can adaptively adjust the scale and position of the selected patch
according to the input of sMRI scans to reduce the damage to atrophic
brain structures caused by split patches. Structural MRI scans can
reveal changes in brain structure that are characteristics of AD, includ-
ing:brain atrophy which mainly refers a reduction of hippocampus and
the temporal lobe in the size of brain regions; ventricular enlargement
which indicates a loss of brain tissue, a significant sign of AD; white
matter hyperintensities which is also related to AD patients [39]. In
conclusion, sMRI scans can provide the mentioned valuable information
on disease features that can be used to diagnose AD. So it is necessary
to use sMRI scan for AD diagnosis.

On the other hand, to address the second problem, we introduce the
Inheritance Patch module based on the 3D Deformable Self-Attention
module and name it the Inheritable 3D Deformable Self-Attention
module, which progressively localizes relatively important pathological
regions in the global sMRI through Inheritable Patches operations
across multiple stages. These possible pathological regions can be used
as the discriminative basis for doctors to make a diagnosis in the clinical
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diagnosis stage. The key pathological change, brain atrophy would be
observed in sMRI using the 3D Deformable Self-Attention module while
comparing with subjective evaluation. By combining sMRI results with
subjective evaluations, healthcare providers can get a more comprehen-
sive understanding of the patient’s condition and make more informed
decisions about treatment. Our proposed IDA-Net method is evaluated
on ADNI and AIBL datasets and multiple AD diagnosis tasks (e.g., AD
classification, prediction of MCI conversion, and MCI discriminations).
Experimental results show that our IDA-Net method behaves better
than several state-of-the-art methods in classification performance and
model generalization. The major contributions of this paper can be
summarized as follows.

1. To construct a unified end-to-end approach to improve sMRI-
based Alzheimer’s Disease Diagnosis performance, an Inheritable
Deformable Attention Network (IDA-Net) is proposed, which
can automatically adjust the scale and position of each selected
patch from sMRI scans and locate pathological areas with dis-
criminative features to assist doctors in Alzheimer’s Disease
Diagnosis.

2. The 3D Deformable Self-Attention module is designed to au-
tomatically regulate the scale and position of each selected
patch according to the different microstructure of brain atrophy
to avoid the destruction of semantic features of brain atrophy
regions.

3. The Inheritable 3D Deformable Self-Attention module is pro-
posed to locate relatively important regions with discriminative
features in the global sMRI scans and output the specific location
of the pathological region, which explains the interpretability
problem of Transformer structure application in clinical medical
practice.

4. Lastly, the proposed method is evaluated on ADNI and AIBL
datasets as well as on multiple AD-related diagnosis tasks,
demonstrating its performance and generalization over several
state-of-the-art methods, especially for predicting MCI conver-
sion.

2. Method
2.1. Overall architecture of inheritable deformable attention network

As illustrated in Fig. 2, the overall architecture of the proposed
Inheritable Deformable Attention Network consists of four stages with
different attention blocks of Self-Attention modules, an Adaptive Av-
erage Pooling, and a Linear Classifier with Softmax. Specifically, an
input sMRI scan with shape 112 x 112 x112 x 1 is firstly embedded
through non-overlapping 3D-convolution with kernel 2 and stride 2 to
obtain 56 x56 x 56 xC patch embeddings, where C is the number of the
channel dimension. Between two successive stages, a non-overlapping
3D-convolution with kernel 2 and stride 2 downsamples the patch em-
beddings to reduce the space size and increase the feature dimension.
After each downsampled 3D convolution layer, a Layer Normalization
layer and a GELU activation function layer are always present. Stage
1 is composed of only N1 stacked 3D Shift Window Attention mod-
ule [40], while the other stages are composed of N* stacked with 3D
Shift Window Attention module, 3D Deformable Self-Attention module,
and Inheritable 3D Deformable Self-Attention module. The output of
the last stage is first compressed from 7 x 7 x7 x8C to 1 x 8C by
Adaptive Average Pooling and then fed into Linear Classifier layers with
Softmax layers to complete the ADNI classification.

We add 3D Deformable Self-Attention and Inheritable 3D
Deformable Self-Attention blocks in all stages of IDA-Net except the
first stage, which only consists of 3D Shift Window Attention blocks.
3D Shift Window Attention allows for the extraction of features by
considering multiple patches, which can be useful in capturing fine-
grained details in sMRI. Since the first stage has not fully completed
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Fig. 2. The overall architecture of our Inheritable Deformable Attention Network (IDA-Net). C and N;

each stage. Kernel and Stride denote the kernel size and stride of the 3D-Convolution.

the feature extraction of local patch feature representation and the
relational modeling of global feature representation, our deformable
attention cannot obtain rich feature representation and thus ignore
possible discriminative information. Further, the space size of the
latter stages is smaller than that of the first stage, which can signif-
icantly reduce the computational cost of sampling and interpolation
in our deformable attention modules. Thus, the first stage is only
concatenated by multiple 3D Shift Window Attention modules for
better feature extraction. In the remaining stages, we concatenate 3D
Shift Window Attention, 3D Deformable Self-Attention, and Inheritable
3D Deformable Self-Attention modules into a multi-attention block in
sequence.

2.2. 3D deformable self-attention module

In order to locate and extract more important features and utilize
geometric variations adaptively, Deformable ConvNets [41,42], which
enables free form deformation of the sampling grid in the traditional
convolution, has been firstly proposed. Recently, many methods have
emerged to fuse Deformable-Related Modules into Transformer-based
Methods [43-45], notably DPT [46] and DAT [47]. Although the
DePatch module proposed by DPT can automatically micro-adjust the
scale and location of each selected patch according to the sMRI scans
or input feature map, it does not integrate deformable operations
into the Transformer backbone. In contrast, DAT manages to integrate
deformable operations into the Transformer backbone by introducing a
set of deformable keys and values. However, its deformable attention
lacks coherence as deformable keys and values between different at-
tention layers are learned separately without combining the previous
deformable parameters. To address the issues above, by referring to
DPT and DAT methods and proposing the Inheritance Patch module, the
3D Deformable Self-Attention module and Inheritable 3D Deformable
Self-Attention module are proposed, respectively.

2.2.1. 3D deformable self-attention

To facilitate understanding of our method, we first review the Self-
Attention mechanism in Vision Transformer. Specifically, let X, z; €
RHXWXDXC denote the input sMRI scans or feature map. X, p; is first
divided into a series of N patches with the same size and position by a
patch embedding module with a linear layer. For convenience, we first
assume H = W = D, and the embedding patch size is s X s X s(s = %).

The entire sequence of patches can be viewed as a uniform grid of size
sXsxs in Xy g;. The series of patches is denoted as {X;}_,_y_,. For
each patch X;, We denote its left-up-front coordinate and right-down-
back coordinate as xﬁ‘)f ‘" ¥, zif ""”) and (xfigh’, ydown, zl.b”"k). These
patches {X;} are then flattened and embedded into a flattened feature
map X € RNX¢ by a linear layer with d output channels. A multi-
head Self-Attention module with M heads takes X € R¥*¢ as input
and generates three learnable groups of representative features query

(¢, € RNm), key (k,, € RN*), value (v, € R¥N*?) by three linear

3D-Convol
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are the numbers of the channel dimension and stacked attention blocks in

embedding matrices W, € R, W, € R, W, € R4, where,
d,, = d/M, respectively. The query features are used to determine the
relevance of different regions of the sMRI. The key features are used to
compare the query features to each region of sSMRI and determine their
similarity. The value features are used to aggregate information from
different regions of sMRI and produce a weighted sum. The specific
formula is as follows:

l_righr — xﬁeft +s y;iawn - y:_tp +s z?ack - zifront +s ¢}
q=W,X+P, k=W, X+P, v=W,X+P 2)
Attenm=Softmax(qu;/\/g)(m=1,...,M) 3)
Z = Concat {Attenlvl, ,AttenMUM} w, (@)

where P is the Positional Encoding. Atten,,, which is used as a weighted
weight for v,,, obtained by multiplying ¢, and k,, indicating the
Similarity matrix between different patches. The new representative
feature Z can be obtained by concatenating and transforming M heads
Atten,,v,,,.

While in the 3D Deformable Self-Attention module, the position
offset and scale parameters will be generated for each selected patch
in the input feature map. The position offset, and the scale parameter
are represented by predictable parameters Aposition (4Ax, Ay, Az),
Ascale = (Ah, Aw, Ad). For each deformed patch X;, the updated left-
up-front coordinate and right-down-back coordinate can be denoted as

(iieft, yitp, Zifram‘) and (i?ight’ yidgwn’ Zf.’””‘).

= x4 Ak, J = A s+ Ax + AR (5)
7P =y + 4y, gown = v+ s+ Ay + Aw (6)
glront _ pfront | Az, 2?"”]‘ =2/ L s+ Az + Ad ()

i i i

As illustrated in Fig. 3(a), to generate the position offset Aposition
and the scale parameter Ascale, we add an Offset network ¢ -
Firstly, the input feature map is embedded into features query ¢ =
W, X, and then send into ¢y, to predict offset parameters. After
the deformed patches are determined, they will be projected linearly to
deformed key k and deformed value & by sampling and interpolation
O(..):

q=W,X+P, k=W, X+P, 6=W,X+P 8

)]

where P and P are the 3D Relative Positional Encoding and deformed
3D Relative Positional Encoding [47]. Then, we use a standard multi-
head Self-Attention module with contrastive positional encoding, which
can be rewritten as follows:

Atten,, = Softmax (quZ/\/E) m=1,.,M)

where X = O (X, Aof fset, Ascale)

10$)
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Fig. 3. An illustration of the proposed Inheritable 3D Deformable Self-Attention module. (a) present the Inheritable 3D Deformable Self-Attention module. Dotted lines are used
to distinguish the Inheritable 3D Deformable Self-Attention module from the 3D Deformable Self-Attention module. After linear embedding, the offset parameter of each patch is
learned from query g through the Offset Network. After that, the deformed patches are obtained by sampling and interpolating on the input feature map according to the offset
parameter. After a standard self-attention module, if the predefined Inheritance parameter in the model is False, the result will be output directly, and the module at this time
is the 3D Deformable Self-Attention module. While the Inheritance parameter is true, the module becomes an Inheritable 3D Deformable Self-Attention module and the output
features will regenerate deformed patches. We only divide the input feature map into 16 patches and show 4 reference patches for clear display, and there will be more patches
in the actual implementation. (b) show the structure of the Offset Network and annotate the size of the feature map. kernel, stride and pad denote the kernel size, stride, and

padding of the 3D-Convolution.

Z = Concat {Attenlﬁl, ,AttenMﬁM} w, 11

The Deformable Transformer block adopts a standard Transformer
block structure, which can be expressed as:

2= Fypsa (Fin (Zi2) + Z1L) (12)

Z; = Freed—rorwara (FLn (ZI)) +2 13)

where Z,_; and F;, denote the output of / — 1 th Deformable Trans-
former block and Layer Normalization. Fy; g4 and Freeq—rorwarda 9d€-
note the multi-head Self-Attention and the Feed-Forward network.

2.2.2. Offset network

Based on the output query of linear embedding, the Offset network
will generate 3D offsets (Adposition, Ascale) for each selected patch.
Assuming the size of a feature map is H * W * D * C, using a patch of
size 2, there are N (N = H/2 * W/2 * D/2) patches on a feature map.
The offset network needs to predict N * 6 offset parameters in total.
As illustrated in Fig. 3(b), the input feature map in which patch size is
2 x 2 x 2, will be downsampled by a 3D convolution layer. Assuming
the patch size of the input feature map is 2 x 2 x2, the kernel of the first
3D convolution layer is 6, its stride is 2 and its pad is 2. After being
processed through the GELU activation function, it is then processed
through another 3D convolution with a kernel size of 1, stride of 1,
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padding of 0, and channel number of 6, resulting in a feature map
of size H/2 * W/2 * D/2 * 6, which corresponds to the N * 6 offset
parameters to be predicted. To avoid generating too large offsets, we
use Scale Ratio (s, s,) to adjust the magnitude of (4position, Ascale):

(Aposition, Ascale) = (5,5, 5;) tanh (¢ f.or (@) (14)

At the beginning of the training phase, we randomly initialize
the weight parameters of these layers. However, the bias value of a
convolutional layer with a kernel size of 1 will be set to False to reduce
the generated offset. The details of parameter settings for Scale Ratio
will be explained in the following section.

2.2.3. Sampling and interpolation

Due to the problem that each deformed patch has a different size,
we set Sampling and Interpolation method to extract the feature. Given
the deformed coordinates )‘cﬁef 5 b ,iifm"') and (fc:ight, gown zback ) a
uniform grid of k X k X k are sampled within the deformed patch
{p;} (0<j<i—1)- The coordinates of the kx kx k grid are often fractional.
Therefore, we obtain the weighted average of the adjacent 8 points C/
by trilinear interpolation to represent j; as:

13/ = Fryifinear (Cj’(xj’y/’zj)) (j =0,... ’k3 - 1) 1s)
¢ = (C(I)OO’C(;OI’””C{IO’C{H) (16)

2.3. Inheritable 3D deformable self-attention module

To promote the coherence of the Deformable Self-Attention module
and solve the interpretability problem, we introduced an Inheritance
patch module branch to implement information transfer between dif-
ferent Deformable Self-Attention layers. By choosing whether to enter
this branch, our Deformable Self-Attention module can be subdivided
into 3D Deformable Self-Attention and Inheritable 3D Deformable Self-
Attention modules. We found that by concatenating multiple Inheri-
table 3D Deformable Self-Attention modules in the overall structure
to inherit the past deformed patches continuously, the network can
gradually locate relatively important regions in the global sMRI scan
and finally output the location of the pathological region. The entire
process of localization and output will be visualized in the next section.

As illustrated in Fig. 3(a), the dotted line represents the Inheritance
patch module branch. When Inheritable is False, the feature map is
output directly after the Deformable Self-Attention layer, without pass-
ing through the Inheritance patch module branch. When Inheritable
is true, the output feature map of the Deformable Self-Attention layer
will regenerate deformed patches based on the previous offset param-
eters. Compared with 3D Deformable Self-Attention, the parameter
setting of Offset Network in Inheritable 3D Deformable Self-Attention
modules is also different. Considering the Inheritable Patch Module
may cause some regions to be unsampled in the feature map due to
too large offsets, Scale Ratio (s,,,s,) in Inheritable 3D Deformable
Self-Attention is set to be a smaller weight than 3D Deformable Self-
Attention. Not only that, but for better learning Inheritable offset
parameters by stacking multiple Self-Attention modules with 3D Shift
Window Self-Attention, 3D Deformable Self-Attention, and Inheritable
3D Deformable Self-Attention.

3. Experiments and results
3.1. Materials and pre-processing

Two Alzheimer’s Disease datasets, including Alzheimer’s Disease
Neuroimaging Initiative datasets (ADNI)' and Australian Imaging,

1 adni.loni.usc.edu
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Biomarker and Lifestyle Flagship Study of Aging datasets (AIBL)?, are
used to validate the classification performance and generalizability
of the proposed Inheritable 3D Deformable Attention Network for
Alzheimer’s Disease Diagnosis. Shared through the LONI Image and
Data Archive (IDA), ADNI is used to study the rate of progression of MCI
and AD to improve diagnostics for early detection of Alzheimer’s dis-
ease. The AIBL study, launched in 2006, will investigate biomarkers and
psychometric tools to observe disease progression. It should be noted
that ADNI contains 3 overlapping subsets, namely ADNI-1, ADNI-2, and
ADNI-3. To avoid data leakage and ensure independent evaluation, if
one subject’s name is presented more than once in all subsets, only one
subject examined at the earliest time will be kept. Since the primary
goal of this paper is to predict MCI progression, only baseline/screening
subjects (sMRI of the first inspection) will be considered. Therefore,
only select subjects that meet the following requirements:

» AD (Alzheimer’s Disease): subjects were diagnosed with AD at the
first inspection and maintained AD at subsequent times.

« NC (Normal Controls): subjects were diagnosed with NC at the first
inspection and maintained NC at subsequent times.

» pMCI (progressive MCI): subjects were diagnosed with MCI at the
first inspection, but deteriorated to AD and maintained AD within 36
months.

« sMCI (stable MCI): subjects were diagnosed with MCI at the first
inspection, but maintained MCI or eased to NC within 36 months.

After this processing, ADNI consists of 2248 subjects with 1.5T/3T
T1-weighted sMRI scans, among which 419 AD, 832 NC, 297 pMCI
and 700 sMCI. AIBL contains structural MRI (sMRI) from 565 subjects,
including 79 AD, 450 NC, 12 pMCI and 24 sMCIL. The demographic and
clinical detail of ADNI and AIBL datasets can be found in Table 1.

In sMRI, there are often several types of noise present, includ-
ing magnetic field inhomogeneity, acquisition noise, motion artifacts,
etc. Therefore, all original sMRIs are then pre-processed following
a standard pipeline, including: SANLM denoising after intensity nor-
malization, Internal resampling (1.00%1.00*1.00 mm), Affine registra-
tion, non-uniform intensity normalization (N3), Gaussian smoothing,
Global intensity bias correction [48,49], Skull-Stripping [22]. All pre-
processing processes are implemented in MATLAB R2019b with Sta-
tistical Parametric Mapping Toolbox (SPM12) [50] and Computational
Anatomy Toolbox (CAT12). Finally, we remove the uninformative back-
ground and resample all sMRI to the same resolution (resolution from
[121,145,121] to [112,112,112]).

3.2. Experimental settings

Our proposed IDA-Net network is implemented with Pytorch 1.10.0.
All experiments are performed on the Linux platform with a single
NVIDIA RTX 3090 GPU by Python 3.9.0. The ADNI dataset is randomly
split into the train, validate and test datasets with a percent of 60%,
20%, 20%. We also test our proposed IDA-Net model individually on
the AIBL dataset to further evaluate the model generalization and
robustness of our IDA-Net method. Overall, our IDA-Net method is
validated on four Alzheimer’s Disease Diagnosis tasks, including the AD
classification task (AD versus NC), the prediction of MCI conversion
task (pMCI versus sMCI), and the MCI discrimination task (sMCI versus
NC, pMCI versus NC).

During the training phase, the Adam optimizer with a weight decay
of le™ for 100 epochs is employed. The Cosine Annealing Warm
Restart scheduler with batch size 4. At the outset of training, the initial
learning rate of the model is set to 1e—3. Subsequently, based on the Co-
sine Annealing Warm Restarts scheduler, the minimum learning rate is
reduced to 1e—5. As for the IDA-Net parameter, the channel dimension
C; and the number of different blocks N; are set to [96,192,384,768]
and [2,1,6,1]. The weights of the Offset Network are initialized to zero.

2 aibl.csiro.au
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Table 1
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Demographic and clinical detail of ADNI and AIBL datasets, including category, clinical dementia rating (CDR), gender, mini-mental state examination (MMSE),

age, education.

Dataset Category Gender (male/female) Age (meanzstd) MMSE (meanzstd) CDR (meanzstd) Education (meanzstd)
AD 419(234/185) 74.97+8.12 23.09+2.06 0.80+0.26 15.72+2.72
ADNI pMCI 297(173/124) 73.38+7.07 27.14+1.73 0.51+0.08 16.04+2.62
sMCI 700(414/286) 71.82+7.57 28.26+1.66 0.47+0.15 16.23+2.67
NC 832(352/480) 72.52+5.76 29.05+1.22 0.01+0.05 16.68+2.51
AD 79(33/46) 73.34+7.82 20.42+5.50 0.93+0.54 -
AIBL pMCI 12(8/4) 74.92+5.98 26.25+1.60 0.5+0.0 -
sMCI 24(10/14) 74.96+6.92 28.04+1.65 0.44+0.17 -
NC 450(184/266) 72.47+6.22 28.73+1.21 0.03+0.11 -
The Scale Ratios (s, s,.) in Inheritable 3D Deformable Self-Attention
and 3D Deformable Self-Attention are set to [2,2] and [4,4]. Table 2

A vanilla Binary Cross Entropy Loss is used to train our model,
which is described as:

Loss (P.T) = = Y(PLi.T i) an
i=1

I(p.ty=—[t = log p+ (1 —1) = log (1 - p)] (18)

where n is the number of sMRI scans, P ant T are the probability and
the target to the sSMRI.

Four metrics are employed to evaluate the classification perfor-
mance of the IDA-Net, namely, Accuracy (ACC), Specificity (SPE),
Sensitivity (SEN) and Area Under Curve (AUC). Each of them can be
computed as:

TP+TN

Accuracy = (19)
TP+TN+FP+FN
TN
Speci ficity = 20
peci ficity TN+ FN (20)
Sensitivity = _TIP__ 21
TP+ FN

where TP, FP, FN, and TN are denoted as true positive, false positive,
false negative, and true negative, respectively.

3.3. Competing methods

Our IDA-Net method is compared with multiple state-of-the-art
patch-based methods. The selected comparison methods are briefly
described below.

1. Multi-Instance Convolutional Neural Network (MICNN): A Multi-
Instance CNN (MICNN) model [51] is proposed for AD-related
diagnosis, which embeds L parallel CNN subnetworks in a series
of 6 convolutional layers to learn specific patch representations.
L parallel patch features are then concatenated into a bag-level
feature, the input to an additional FC layer to capture complex
relationships between image patches.;

2. Hierarchical Fully Convolutional Network (HFCN): In this work
[24], the Hierarchical Fully Convolutional Network (HFCN) con-
sists of a series of patch subnetworks and region subnetworks,
which utilizes patch representations to provide more direct and
higher semantic information under multi-scale supervision. Fi-
nally, the outputs are spatially aggregated and processed by a
global subject network to predict the probability of the classifi-
cation.;

3. Dual Attention Multi-Instance Deep Learning (DA-MIDL): Dual
Attention Multi-Instance Deep Learning (DA-MIDL) [1], as the
method we mainly use for comparison, is composed of the Patch-
Net and the attention multi-instance learning pooling (MIL-
pooling). The Patch-Net not only learns spatial attention lo-
cal patch features, but also outputs a contribution score for
each patch. The MIL-pooling is designed to compute the rela-
tive contributions of the selected patches and produces a glob-
ally distinct weighted feature representation according to the
contribution scores generated by the Patch-Net.

Performance comparison for AD classification task (AD versus NC) and the prediction
of MCI conversion task (pMCI versus sMCI) on ADNI test dataset.

Methods  AD vs NC pMCI vs sMCI
ACC SEN SPE AUC ACC SEN SPE AUC
MICNN 0.902 0.881 0915 0943 0.772 0.685 0.827 0.798
H-FCN 0.898 0.841 0927 0.925 0.797 0.741 0.804 0.805
DA-MIDL  0.918 0.926 0.924 0947 0.813 0.786 0.824 0.853
IDA-Net 0.927 0919 0.946 0.972 0.835 0.802 0.855 0.877
Table 3

Performance comparison for MCI discrimination task (sMCI versus NC, pMCI versus
NC) on ADNI test dataset.

Methods pMCI vs NC sMCI vs NC

ACC SEN SPE AUC ACC SEN SPE AUC
MICNN 0.877 0.758 0915 0.900 0.806 0.758 0.837 0.817
H-FCN 0.892 0.801 0.923 0.912 0.818 0.799 0.815 0.823
DA-MIDL 0.894 0.813 0.927 0.904 0.823 0.786 0.833 0.858
IDA-Net 0.913 0.846 0.949 0.931 0.852 0.838 0.851 0.884

Note that the comparison methods selected above are reproduced
from the detailed model structure diagram or official code provided by
the original paper on the same train and test datasets used in our paper.
The Patch Location Proposals module in the above methods uniformly
uses the same Patch Location Proposals methods mentioned in Dual
Attention Multi-Instance Deep Learning (DA-MIDL). Considering that
the number of subjects and pre-processing methods of the datasets
used in different comparison methods are different, these competing
methods may not achieve the same level of performance as their paper.

3.4. Performance on ADNI

The performance of the proposed IDA-Net method and other com-
parison methods for AD classification (AD versus NC) and the predic-
tion of MCI conversion (pMCI versus sMCI) on the ADNI test dataset is
shown in Table 2.

As shown in Table 2, in the vast majority of cases, our IDA-Net
method has stronger classification performance on both AD classifi-
cation and the prediction of MCI conversion tasks. Specifically, ACC
(0.927), SPE (0.946) and AUC (0.972) of our IDE-Net method have
more robust classification performance than other methods in AD clas-
sification. Furthermore, in the prediction of the MCI conversion task,
all metrics (ACC (0.835), SPE (0.855), SEN (0.802) and AUC (0.884)) of
our IDA-Net method outperform the results achieved by the other four
methods. Meanwhile, it should be noted that some of the competing
methods we reproduced have higher scores than their original papers
on the prediction of the MCI conversion task. The likely reason is that
the number of subjects in pMCI and sMCI in our selected ADNI dataset
is nearly double that of their original paper, alleviating their possible
underfitting problem. Compared to the state-of-the-art methods, our
IDA-Net method has stronger classification performance overall on
both classification tasks, especially in the more difficult prediction of
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Table 4
Generalization comparison for AD classification task (AD versus NC) and the prediction
of MCI conversion task (pMCI versus sMCI) on AIBL dataset.

Methods ~ AD vs NC pMCI vs sMCI
ACC SEN SPE AUC ACC SEN SPE AUC

MICNN 0.886 0.864 0.898 0.926 0.737 0.647 0.787 0.756
H-FCN 0.884 0.826 0917 0910 0.771 0.720 0.781 0.778
DA-MIDL  0.905 0.918 0.906 0.929 0.789 0.757 0.798  0.827
IDA-Net 0.909 0.903 0.935 0.961 0.812 0.790 0.835 0.854

Table 5
Generalization comparison for MCI discrimination task (sMCI versus NC, pMCI versus
NC) on AIBL dataset.

Methods  pMCI vs NC sMCI vs NC
ACC SEN SPE AUC ACC SEN SPE AUC

MICNN 0.866 0.736 0.904 0.873 0.789 0.743 0.817 0.793
H-FCN 0.869 0.789 0.902 0.885 0.784 0.765 0.789 0.796
DA-MIDL  0.885 0.803 0.902 0.904 0.783 0.769 0.827 0.834
IDA-Net 0.896 0.826 0.928 0.914 0.834 0.814 0.839 0.866

MCI conversion task. The most likely reason may be that our IDA-
Net model can more accurately locate the multi-scale microstructure
of brain atrophy and extract discriminative features in the sMRI. This
also explains why we have superior improvement on various metrics
in the prediction of MCI conversion task because the microstructure
of brain atrophy between pMCI and sMCI are very similar, making it
challenging to discriminate effectively.

To further verify our above conjecture, we conducted additional
experiments on the MCI discrimination tasks (i.e., sSMCI versus NC and
pMCI versus NC). The MCI discrimination task faces the same chal-
lenging problems as the prediction of MCI conversion; slight changes
in brain structure in the early stage are similar and difficult to dis-
tinguish. As shown in Table 3, our IDA-Net method also has a clear
lead in the performance of these additional MCI discrimination tasks.
For example, our IDE-Net method achieves good results in all metrics
(ACC (0.913), SPE (0.949), SEN (0.846) and AUC (0.931)) in the MCI
discrimination task of classifying pMCI from NC. Additionally, in the
MCI discrimination task of classifying sMCI from NC, the ACC (0.852),
SPE (0.851), SEN (0.838) and AUC (0.851) of the IDA-Net method are
also significantly better than the other competing methods.

3.5. Generalization on AIBL

To evaluate the robustness and generalization of our proposed
IDA-Net method, our proposed IDA-Net method and other comparison
methods trained on ADNI dataset are tested on the independent AIBL
dataset. The experimental results of our IDA-Net method and other
comparison methods for the AD classification task, prediction of MCI
conversion task, and MCI discriminations tasks on the AIBL dataset are
shown in Table 4 and Table 5.

In all AD-related diagnosis tasks, our proposed IDA-Net method
behaves better than other comparison methods on most metrics. For
example, as shown in Table 4, our IDA-Net method also achieved
stronger classification results in the prediction of MCI conversion task
(0.812, 0.835, 0.790 and 0.827 for ACC, SPE, SEN and AUC), outper-
forming DA-MIDL methods (ACC (0.789), SPE (0.798), SEN (0.757)
and AUC (0.827)). On the AIBL dataset, our IDA-Net method has
the best AUC (0.961) for the AD classification task, outperforming
MICNN (0.926), H-FCN (0.910), and DA-MIDL (0.929). As shown in
Table 5, ACC (0.896), SPE (0.928), SEN (0.826) and AUC (0.914) of
our IDA-Net method achieves stronger classification results than other
comparison methods in the pMCI versus NC classification task. For
the MCI discrimination task of classifying sMCI from NC, our IDA-
Net method also acquires better metrics, especially on ACC (0.834),
SEN (0.814) and AUC (0.866). In addition, the performance metrics
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of our IDA-Net method for each AD-related diagnosis task are not
significantly degraded compared to the results reported in Table 2 and
Table 3. These experimental results generally indicate that our IDA-
Net method has good robustness and generalization performance in
AD-related diagnosis tasks.

3.6. Comparison with previous works

To compare our method more broadly with related research on
sMRI-based AD diagnosis, in Table 6, we summarize several state-
of-the-art methods for AD classification task and prediction of MCI
conversion task based on structural MRI from ADNI database reported
in relevant literature [57], including two 3D patches of Hippocam-
pus methods [52,54], three 3D patches of whole brain method [1,
24,51], one 2D image method [56], one single cross-sectional brain
method [55] and one 3D GM volume method [53]. It is worth noting
that since these methods use different numbers of subjects, different
pre-processing procedures, different training, valuing, and testing set
partitioning strategies, and even different pMCI/sMCI definitions, a
direct comparison between these methods is potentially unreasonable
and misleading. However, we can still draw some rough conclusions by
briefly comparing our study with these state-of-the-art methods.

As shown in Table 6, compared to other methods, the ADNI dataset
we constructed has the largest number of subjects (2248 subjects),
which means that the classification performance and generalization
of our IDA-Net method will be relatively stable without overfitting.
Moreover, compared with only a slight lead in the AD classification
task, our IDA-Net method has about 3%-8% improvement in each
metric in the MCI conversion prediction task. This means that our IDA-
Net method is more sensitive to the microstructure of brain atrophy
in sMRI due to the introduction of our proposed 3D Deformable Self-
Attention module and the Inheritable 3D Deformable Self-Attention
module.

4. Discussion
4.1. Ablation studies on different attention block structure

To verify the effectiveness of the 3D Deformable Self-Attention
module and Inheritable 3D Deformable Self-Attention module in our
method, we try different attention block structures of three
Self-Attention modules (i.e., 3D Shift Window Self-Attention, 3D De-
formable Self-Attention, and Inheritable 3D Deformable Self-Attention)
used in IDA-Net, and the results are shown inTable 7.

As shown in Table 7, even the performance of the IDA-Net s,
composed of only 3D Shift Window Self-Attention modules is close
to that of most comparison methods in the AD classification task
and the prediction of MCI conversion task, which fully demonstrates
the potential of the Transformer structure. By replacing the last two-
layer 3D Shift Window Self-Attention of the attention block of the
IDA-Net 555, with the 3D Deformable Self-Attention module, the in-
dicators of the IDA-Net gy, are improved by nearly 2%. Comparing
the results of IDA-Net, IDA-Net gy ), and IDA-Netsgs), We can con-
clude the effectiveness of our proposed 3D Deformable Self-Attention
and Inheritable 3D Deformable Self-Attention modules. As shown in
Table 7, by reasonably combining multiple Self-Attention modules,
the classification performance of the model is often better than that
of only using a single Self-Attention module. Suppose the 3D Shift
Window Self-Attention module is used in the first layer of the attention
block. In that case, it can bring about a 1% performance improvement,
which indicates that the 3D Shift Window Self-Attention module can
obtain rich feature representation, which can help 3D Deformable Self-
Attention and Inheritable 3D Deformable Self-Attention modules learn
more accurate offset information.
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Table 6
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A brief comparison of state-of-the-art methods on AD classification task and prediction of MCI conversion task based on sMRI-based ADNI datasets.

Reference

Method

Subjects

AD vs NC pMCI vs sMCI
ACC SEN SPE AUC ACC SEN SPE AUC

Li et al. [52] 3D Patches of Hippocampus, 194 AD + 164 pMCI + 0.891 0.846 0.931 0.910 0.725 0.610 0.825 0.746
3D DenseNet + BGRUs 233 sMCI + 216 NC
Cui et al. [53] 3D GM volume, 198 AD + 167 pMCI + 0.9133 0.8687 0.9520 0.9322 0.7171 0.6527 0.7627 0.7303
CNN + RNN 236 sMCI + 229 NC
Lian et al. [24] 3D patches of whole brain, 358 AD + 205 pMCI + 0.903 0.824 0.965 0.951 0.809 0.526 0.854 0.781
CNN 465 sMCI + 429 NC
Cui and Liu [54] 3D patches of Hippocampus, 192 AD + 165 pMCI + 0.9229  0.9063 0.9372 0.9695 0.7500 0.7333 0.7619 0.7970
3D DenseNet + Shape analysis 231 sMCI + 223 NC
Liu et al. [51] 3D patches of whole brain, 358 AD + 205 pMCI + 0.9109 0.8805  0.9350 0.9586 0.7690  0.4211 0.8243  0.7764
landmark-based + multi-instance 465 sMCI + 429 NC
Zhu et al. [1] 3D patches of whole brain, 468 AD + 189 pMCI + 0.924 0.910 0.938 0.965 0.802 0.771 0.826 0.851
multi-instance + Dual Attention 325 sMCI + 707 NC
Sylvia et al. [55]  single cross-sectional brain, 294 AD + 253 pMCI + 0.992 0.989 0.995 - 0.751 0.748 0.753 -
3D Convolutions Network 510 sMCI + 352 NC
Lim et al. [56] 2D image, 192 AD + 398 MCI + 0.786 0.821 0.737 - - - - -
VGG-16+ResNET-50 229 NC
Proposed 3D patches of whole brain, 498 AD + 309 pMCI + 0.927 0.919 0.946 0.972 0.835 0.802 0.855 0.877
Inheritable 3D Deformable 724 sMCI + 1282 NC
Attention
Table 7
Results of ablation studies with different attention block structure of Self-Attention modules.
Ablation methods Attention block structure AD vs NC PpMCI vs sMCI
ACC SEN SPE AUC ACC SEN SPE AUC
IDA-Net [3D Shifted Window, 3D 0.927 0.919 0.946 0.972 0.835 0.802 0.855 0.877
Deformable, Inheritable
3D Deformable]
IDA-Net [3D Shifted Window, 3D 0.901 0.893 0.920 0.947 0.813 0.787 0.836 0.854
Shifted Window, 3D
Shifted Window]
IDA-Net sy, [3D Shifted Window, 3D 0.923 0.913 0.946 0.968 0.828 0.806 0.850 0.874
Deformable, 3D
Deformable]
IDA-Net g, [3D Shifted Window, 0.903 0.894 0.923 0.949 0.813 0.782 0.828 0.853
Inheritable 3D
Deformable, Inheritable
3D Deformable]
IDA-Net y y vy [3D Deformable, 3D 0.912 0.898 0.930 0.950 0.818 0.786 0.836 0.858
Deformable, 3D
Deformable]
IDA-Net; [Inheritable 3D 0.883 0.883 0.908 0.932 0.800 0.763 0.825 0.843
Deformable, Inheritable
3D Deformable,
Inheritable 3D
Deformable]
IDA-Net y v ) [3D Deformable, 3D 0.919 0.913 0.939 0.963 0.825 0.792 0.846 0.868

Deformable, Inheritable
3D Deformable]

4.2. Ablation studies on different scale ratio

We further investigate the effect of different maximum offset range

Scale Ratio (s

po>
As shown in Table 8, we limited the range of (s

s,.) for our proposed Self-Attention modules.

po>

sg.) from O

to 8 and completed a total of 9 sets of ablation experiments. When
the 3D Deformable Self-Attention module uses a larger (s, s,.) range
and a smaller (s, s,.) in Inheritable 3D Deformable Self-Attention is
set, the performance of the IDA-Net method will be improved to a
certain extent. Our proposed IDA-Net method is relatively insensitive
to the Scale Ratio range of values. In the end, we chose [4,4] in
3D Deformable Self-Attention and [2,2] in Inheritable 3D Deformable
Self-Attention as the final model used in our paper, namely IDA-Net*42,

4.3. Visualization

To verify the effectiveness of Inheritable 3D Deformable
Self-Attention and compare it with the results of the original patch-
based method, we visualize the entire process of the model implement-
ing adaptive patch position and scale adjustment by fusing the offsets
of multiple attention block layers. Specifically, we choose stage 3 of
the IDA-Net model, composed of 6* stacked attention block layers, to
facilitate a more coherent presentation of the entire change process.
The 14 x 14 x 14 feature map of stage 3 is divided into 343 patches
of size 2 x 2 x 2. We record the offsets of each attention block’s
deformed patches and project it into 3D space by Plotly packages.® And

3 https://github.com/plotly/plotly.py
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Table 8

Results of ablation studies with different scale ratio in 3D Deformable Self-Attention module and inheritable 3D Deformable Self-Attention module.

Ablation methods Scale Ratio in AD vs NC PMCI vs sMCI
3D Deform&Inher 3D Defrom ACC SEN SPE AUC ACC SEN SPE AUC

IDA-Net*® [0,0] 0.914 0.900 0.927 0.959 0.826 0.783 0.847 0.862
[0,0]

IDA-Net*!! [1,1] 0.921 0.912 0.941 0.965 0.831 0.799 0.851 0.873
[1,1]

IDA-Net*?! [2,2] 0.924 0.918 0.946 0.969 0.836 0.799 0.855 0.878
[1,1]

IDA-Net*?? [2,2] 0.928 0.914 0.945 0.970 0.837 0.799 0.854 0.874
[2,2]

IDA-Net**? [4,4] 0.927 0.919 0.946 0.972 0.835 0.802 0.855 0.877
[2,2]

IDA-Net*3 [3,3] 0.926 0.908 0.930 0.971 0.836 0.803 0.851 0.875
[3,31

IDA-Net*® [6,6] 0.918 0.912 0.941 0.968 0.827 0.789 0.843 0.873
[3,3]

IDA-Net*# [4,4] 0.920 0.911 0.942 0.967 0.829 0.793 0.850 0.874
[4,4]

IDA-Net*®* [8,8] 0.906 0.911 0.920 0.954 0.824 0.790 0.834 0.853
[4,4]

3D view Sagittal view Coronal view  Axial view Patches Scale

\“e k
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Original Patch-
based method
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2-th Layers
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4-th Layers
Patches Position

6-th Layers
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Fig. 4. Comparison of the position and scale of each patch between our proposed IDA-Net method and Patches Location Proposals in the original patch-based method (DA-MIDL)
on one AD subject. The first four columns are visualizations of the coordinates of the center point position of each selected patch in different 3D perspectives. The last column
visualizes the position and scale of some patches. The first row above the line represents the 60 patches selected by Patches Location Proposals based on Student’s t-test and
p-value ranking. The four rows below the line are visualizations of deformed patches after passing through which layer of attention blocks in stage 3 of IDA-Net.
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for the visualization of the original patch-based method, we selected 60
patches by Student’s t-test and p-value ranking based on the Patches
Location Proposals proposed by DA-MIDL and visualized these patches
using the same method.

As shown in Fig. 4, the first four columns are the coordinate visual-
ization of the center point position of each selected patch in different
3D views. For intuitive observation, we only show the position and
scale changes of a few patches in the last column of Fig. 4. The first
row at the top of the line represents the 60 patches selected by Patches
Location Proposals based on Student’s t-test and p-value ranking. The
four rows below visualize the deformed patches after which layer of
attention blocks passed in the stage 3 of IDA-Net. As shown in the
first row of Fig. 4, the position and scale of the patch selected by
the original patch-based method are fixed, which leads to a lack of
flexibility in patch selection and limits the classification performance
of the model. In contrast, observing the movement trend of the center
point of each patch in each attention block layer, the deformed patches
are mainly concentrated in the upper middle region (i.e., frontal lobe,
parietal cortex) and lower middle area (i.e., hippocampus, amygdala,
and thalamus) of the whole brain, where neuritic plaque [58] and
neurofibrillary tangles [59] which are highly related to Alzheimer’s
Disease usually appear. As shown in the last column of Fig. 4, different
deformed patches can be viewed as different local feature extractors,
which adaptively adjust their position and scale to capture essential
features. These mean that our proposed IDA-Net method can locate and
output possible discriminative pathological locations from the whole
SMRI scans, which can be used as an optional auxiliary diagnosis
method for doctors in the clinical diagnosis stage. Thus, our proposed
IDA-Net method also solves the interpretability problem of Transformer
structure application in clinical medical practice to a certain extent.

4.4. Limitations and future work

Although our IDA-Net method has excellent classification perfor-
mance in various Alzheimer’s Disease Diagnosis tasks, there still exist
some limitations that may limit the performance of IDA-Net method.
The following main limitations and potentially effective solutions are
listed below. (1) As shown in Fig. 4, there are some deformed patches
with considerable overlap, which brings too much repetitive informa-
tion to our method and weakens the method’s ability to extract the
global feature of the entire sMRI. In future works, we can predict a
contribution value for each patch and reduce those patches that overlap
with large areas by merging or removing multiple overlap patches.
(2) Although our proposed IDA-Net method has a better classification
improvement over state-of-the-art methods in the MCI conversion pre-
diction task. However, all metrics of the MCI conversion prediction task
are still much lower than that of the AD classification task because the
discriminative pathological features of pMCI and sMCI are very similar
and difficult to distinguish. Therefore, Supervised Contrastive Learning
methods [60] may be adopted to make the model more sensitive to
discriminative features between pMCI and sMCI.

5. Conclusion

In this paper, inspired by Transformer, we proposed a unified
end-to-end Inheritable Deformable Attention Network (IDA-Net) for
sMRI-based Alzheimer’s Disease diagnosis, which includes two major
components: (1) 3D Deformable Self-Attention module for automati-
cally adjusting the position and scale of the selected patch. (2) In-
heritable 3D Deformable Self-Attention module for locating possible
important regions with discriminative features in the global sMRI scans
and outputting the specific location of the pathological regions. Our
proposed IDA-Net method was evaluated on ADNI and AIBL datasets in
multiple Alzheimer’s Disease Diagnosis tasks. The experimental results
of AD-related diagnosis demonstrated that our IDA-Net method ac-
quires better classification performance and generalization than several
state-of-the-art methods, especially for the prediction of MCI conver-
sion.
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